Neuropedagogy and Neuroimaging of Artificial Intelligence and Deep Learning
pp. 97-115 | Published Online: October 2024 | DOI: 10.22521/edupij.2024.133.6
Claudia De Barros Camargo , Antonio Hernández Fernández
Full text PDF | 88 | 39
Abstract
Background/Purpose. This study investigates the integration of neuropedagogy, neuroimaging, artificial intelligence (AI), and deep learning in educational systems. The research aims to elucidate how these technologies can be synergistically applied to optimize learning processes based on individual neurocognitive profiles, thereby enhancing educational effectiveness. Materials/Methods. A mixed-methods approach was employed, incorporating both quantitative and qualitative analyses. The study involved 297 students and 59 teachers. Quantitative methods included exploratory factor analysis (EFA) to validate the Neuropedagogy, Neuroimaging, Artificial Intelligence, and Deep Learning Scale, and Spearman correlations to examine inter-variable relationships. Qualitative data were collected through focus groups and analyzed using selective coding. Additionally, a comparative case study using portable electroencephalography (EEG) was conducted to observe direct neurological effects of different learning approaches. Results. EFA confirmed the construct validity of the scale (KMO = .89, p < .001). Spearman correlations revealed significant positive relationships between all dimensions (.65-.72, p < .01). Multiple regression analysis indicated that AI was the strongest predictor of deep learning (β = 0.39, p < .001). The neuroimaging case study demonstrated increased frontal and prefrontal lobe activation and enhanced theta-gamma wave synchronization in AI-supported learning tasks, suggesting more integrated information processing. |
Conclusion. The findings provide empirical evidence for the transformative potential of integrating neuropedagogy, neuroimaging, AI, and deep learning in education. The strong predictive relationship between AI and deep learning, coupled with the neuroimaging results, suggests that this technological convergence can significantly enhance learning processes. However, the study also highlighted the need for careful ethical considerations in its implementation. These results contribute to the growing body of knowledge on technology-enhanced learning and offer a foundation for developing more personalized and effective educational strategies.
Keywords: Neuropedagogy, neuroimaging, artificial intelligence, deep learning, educational personalization
ReferencesAyala, S. (2024). Inteligencia artificial en el diagnóstico médico: un enfoque basado en el aprendizaje profundo [Artificial intelligence in medical diagnosis: a deep learning-based approach]. Revista SOCIENCYTEC, 3(1). https://sociencytec.com/index.php/sct/article/view/18
Bravo Minda, L. E., Pincay Lino, K. E., Villafuerte Toala, K. L., & Llanqui Saltos, J. C. (2024). Análisis de las herramientas digitales pedagógicas utilizadas en la educación superior tecnológica [Analysis of the digital pedagogical tools used in Technological Higher Education]. Sinergia Académica, 7(SI 3), 551-565. https://sinergiaacademica.com/index.php/sa/article/view/288
Cortes Osorio, J. A. (2024). El Impacto de la Inteligencia Artificial en la Academia: Un llamado a la Adaptación y la Ética [The Impact of Artificial Intelligence in Academia: A Call for Adaptation and Ethics]. Scientia et Technica Año XXIX, 29(1), 4-6. https://doi.org/10.22517/23447214.25598
Cortez Maclas, L. D., Sarmiento Montoy, L. M., & Hernández, R. G. (2024). La neuropedagogía y sus herramientas educativas para mejorar la enseñanza en la educación técnica profesional en el área de contabilidad [Neuropedagogy and its educational tools to improve teaching in professional technical education in the area of accounting]. RECIMUNDO, 8(1), 385-399. https://doi.org/10.26820/recimundo/8.(1).ene.2024.385-399
Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20, Article 22. https://doi.org/10.1186/s41239-023-00392-8
De Barros Camargo, C. (2022). Neurometodologia e neuroimagem para a formação de professors [Neuromethodology and neuroimaging for a teacher training]. Texto livre, Linguagem e Tecnologia, 15, Article e40454. https://doi.org/10.35699/1983-3652.2022.40454
De Barros Camargo, C. (2023a). Neurometodología docente y neuroimagen [Teaching neuromethodology and neuroimaging]. In R. M. Esteban, C. De Barros Camargo, & R. Quijano López (Eds.), Claves de la neuropedagogía [Keys to neuropedagogy] (pp. 87-91). Octaedro.
De Barros Camargo, C. (2023b). Neuroimagen y neurodidáctica como herramientas tecno-pedagógicas [Neuroimaging and neurodidactics as techno-pedagogical tools]. In I. Aznar Diaz, M. N. Campos Soto, J. C. Cruz Campos, & L. Hinojo Cirre (Eds.), Hacia nuevos estándares educativos para una educación de Calidad [Towards new educational standards for quality education] (pp. 149-1156). Dykinson.
De Barros Camargo, C., & Hernández Fernández, A. (2022). Neuroscience, neuroeducation, neurodidáctics and technology. Texto livre, 15, Article e41235. https://www.scielo.br/j/tl/a/kjTgFC6qGTxsbMG3MVGQBGn/
De Barros Camargo, C., & Hernández Fernández, A. (2024). Aspectos prácticos de la neuropedagogía para la práctica educartiva en neuroaulas [Practical aspects of neuropedagogy for educational practice in neuroclassrooms]. In R. M. Esteban Moreno, I. Martínez Sánchez, S. López Rodríguez, & M. Cuevas López (Eds.), Perspectivas de la neuropedagogía [Perspectives of neuropedagogy] (pp. 1397-1407). Octaedro.
Delgado, N., Campo Carrasco, L., de la Maza, M. S., & Etxabe-Urbieta, J. M. (2024). Aplicación de la Inteligencia Artificial (IA) en Educación: Los beneficios y limitaciones de la IA percibidos por el profesorado de educación primaria, educación secundaria y educación superior [Application of Artificial Intelligence (AI) in Education: Benefits and Limitations of AI as Perceived by Primary, Secondary, and Higher Education Teachers]. Revista Electrónica Interuniversitaria de Formación del Profesorado, 27(1), 207-224. https://doi.org/10.6018/reifop.577211
Esteban Moreno, R. M., De Barros Camargo, C., & Quijano López, R. (Eds.). (2023). Claves de la Neuropedagogía [Keys to neuropedagogy]. Octaedro.
Goenechea, C., & Valero-Franco, C. (2024). Educación e inteligencia artificial: Un análisis desde la perspectiva de los docentes en formación [Education and artificial intelligence: An analysis from the perspective of teachers in training]. REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 22(2), 33-50. https://doi.org/10.15366/reice2024.22.2.002
Heredia, J., & Stoica, R. (2023). Artificial Intelligence in Higher Education. A Literature Review Journal of Public Administration Finance and Law, 30, 97-115. https://doi.org/10.47743/jopafl-2023-30-09
Hernández Fernández A. (2022). Neuropedagogy and neuroimagen [Neuropedagogy and neuroimaging]. Texto livre, Linguagem e Tecnologia, 15, Article e40453. https://doi.org/10.35699/1983-3652.2022.40453
Hernández Fernández, A., & De Barros Camargo, C. (2023a). Neurodidáctica y neuroimagen de la argumentación escrita [Neurodidactics and neuroimaging of written argumentation]. In R. Arroyo, L. Carlucci, & C. Navas-Vallejo (Eds.), La argumentación científica multilingüe. Perspectiva interdisciplinar [Multilingual scientific argumentation. Interdisciplinary perspective] (pp. 35-44). Dykinson.
Hernández Fernández, A., & De Barros Camargo, C. (2023b). Neuropedagogía, neurometodología y neuroimagen para una educación de calidad [Neuropedagogy, neuromethodology and neuroimaging for quality education]. In A. Palomares Ruiz & E. García Toledano (Eds.), Liderazgo y emprendimiento en docencia e investigación para una educación inclusiva [Leadership and entrepreneurship in teaching and research for inclusive education] (pp. 225-232). Síntesis.
Hernández Fernández, A., & De Barros Camargo, C. (2024). Desnudando del cerebro [Stripping the brain]. GEU.
Menacho Ángeles, M. R., Pizarro Arancibia, L. M., Osorio Menacho, J. A., Osorio Menacho, J. A., & León Pizarro, B. L. (Eds.). (2024). Inteligencia artificial como herramienta en el aprendizaje autónomo de los estudiantes de educación superior [Artificial intelligence as a tool for autonomous learning in higher education students]. Revista InveCom, 4(2). https://doi.org/10.5281/zenodo.10693945
Moreno-Guerrero, A. J., López-Belmonte, J., Marín-Marín, J. A., & Soler-Costa, R. (2020). Scientific Development of Educational Artificial Intelligence in Web of Science. Future Internet, 12(8), Article 124; https://doi.org/10.3390/fi12080124
Segarra Ciprés, M., Grangel Segue, R., & Belmonte Fernández, Ó. (2024). ChatGPT como herramienta de apoyo al aprendizaje en la educación superior: una experiencia docente [ChatGPT as a learning support tool in higher education: a teaching experience]. Tecnología, Ciencia y Educación, 28, 7-44. https://doi.org/10.51302/tce.2024.19083
Torres Vivar, R. T., del Roció Sánchez Avila, P., Pizarro Vargas, V. J., & Rubio Marin, A. F. (2024). Aplicaciones de inteligencia artificial (IA) en la educación [Applications of artificial intelligence (AI) in education]. RECIAMUC, 8(1), 178-188. https://doi.org/10.26820/reciamuc/8.(1).ene.2024.178-188
Yáñez Sepúl Veda, R., Páez Herrera, J., Almonacid, J. H., Amigo, T. R., & Cortés Roco,G. (Eds.). (2024). Metodologías activas para el aprendizaje en educación superior [Active methodologies for learning in higher education]. In C. Hervás-Gómez, M. D. Díaz-Noguera, E. F. Florina Grosu, A.-A. Mâță, & N. Barkoczi (Eds.), Transformado la educación: tecnología, innovación y sociedad en la era digital [Transforming education: technology, innovation and society in the digital age] (pp. 40-53). Dykinson.
EDUPIJ News!
► Journal Metrics
► EDUPIJ Statistics from Scopus
CiteScore: 3.4, view Scopus page
► Educational Process: International Journal is member of the Committee on Publication Ethics (COPE).
► New issue coming soon! (Volume 13 Issue 4, 2024)